Biosorption of Cadmium by Non-Toxic Extracellular Polymeric Substances (EPS) Synthesized by Bacteria from Marine Intertidal Biofilms
نویسندگان
چکیده
Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS) produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan); these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax) was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS) before and after sorption. The Qmax of Cd2+ was 97 mg g-1 for Microbactan and 141 mg g-1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process.
منابع مشابه
Effects of toxic metals and chemicals on biofilm and biocorrosion.
Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92...
متن کاملSYNTHESIS AND CHARACTERIZATION OF CADMIUM SULPHIDE NANOPARTICLEs AND ITS UTILIZATION IN REMOVAL OF CADMIUM FROM AQUEOUS SOLUTION
Nanomaterials are the leading edge to the rapidly developing nanotechnology. For the synthesis of nanomaterials over a wide range of chemical composition, the development of reliable and efficient methods is a challenging issue in nanotechnology. In context to this green synthesis of nanoparticles using biological systems, plant products and microorganisms are potentially considerable because o...
متن کاملOptimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with a 13X zeolite for the biosorption of Cr(VI).
In this work we aimed to optimize the production of extracellular polymeric substances (EPS) by an Arthrobacter viscosus biofilm supported on 13X zeolite to be used in the biosorption of Cr(VI). The optimization parameters were agitation rate, work volume, pH and glucose concentration. Following the optimization of EPS production, the biofilm was used in the biosorption of hexavalent Cr from li...
متن کاملCharacterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11.
Biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11 was isolated from coastal marine sediment of Paradeep Port, Odisha, East Coast, India, which resisted up to 1,000 ppm of cadmium (Cd) as cadmium chloride in aerobic conditions with a minimal inhibitory concentration of 1,250 ppm. Biomass and extracellular polymeric substances (EPS) secreted by the cells effectively removed 58.760 ± 1...
متن کاملDifferent Types of Diatom-Derived Extracellular Polymeric Substances Drive Changes in Heterotrophic Bacterial Communities from Intertidal Sediments
Intertidal areas support extensive diatom-rich biofilms. Such microphytobenthic (MPB) diatoms exude large quantities of extracellular polymeric substances (EPS) comprising polysaccharides, glycoproteins and other biopolymers, which represent a substantial carbon pool. However, degradation rates of different EPS components, and how they shape heterotrophic communities in sediments, are not well ...
متن کامل